Formation of highly reactive cyclopentenone isoprostane compounds (A3/J3-isoprostanes) in vivo from eicosapentaenoic acid.

نویسندگان

  • Joshua D Brooks
  • Ginger L Milne
  • Huiyong Yin
  • Stephanie C Sanchez
  • Ned A Porter
  • Jason D Morrow
چکیده

Omega-3 (omega-3) polyunsaturated fatty acids (PUFAs) found in marine fish oils are known to suppress inflammation associated with a wide variety of diseases. Eicosapentaenoic acid (EPA) is one of the most abundant omega-3 fatty acids in fish oil, but the mechanism(s) by which EPA exerts its beneficial effects is unknown. Recent studies, however, have demonstrated that oxidized EPA, rather than native EPA, possesses anti-atherosclerotic, anti-inflammatory, and anti-proliferative effects. Very few studies to date have investigated which EPA oxidation products are responsible for this bioactivity. Our research group has previously reported that anti-inflammatory prostaglandin A(2)-like and prostaglandin J(2)-like compounds, termed A(2)/J(2)-isoprostanes (IsoPs), are produced in vivo by the free radical-catalyzed peroxidation of arachidonic acid and represent one of the major products resulting from the oxidation of this PUFA. Based on these observations, we questioned whether cyclopentenone-IsoP compounds are formed from the oxidation of EPA in vivo. Herein, we report the formation of cyclopentenone-IsoP molecules, termed A(3)/J(3)-IsoPs, formed in abundance in vitro and in vivo from EPA peroxidation. Chemical approaches coupled with gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) were used to structurally characterize these compounds as A(3)/J(3)-IsoPs. We found that levels of these molecules increase approximately 200-fold with oxidation of EPA in vitro from a basal level of 0.8 +/- 0.4 ng/mg EPA to 196 +/- 23 ng/mg EPA after 36 h. We also detected these compounds in significant amounts in fresh liver tissue from EPA-fed rats at basal levels of 19 +/- 2 ng/g tissue. Amounts increased to 102 +/- 15 ng/g tissue in vivo in settings of oxidative stress. These studies have, for the first time, definitively characterized novel, highly reactive A/J-ring IsoP compounds that form in abundance from the oxidation of EPA in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of highly reactive A-ring and J-ring isoprostane-like compounds (A4/J4-neuroprostanes) in vivo from docosahexaenoic acid.

Free radical-initiated oxidant injury and lipid peroxidation have been implicated in a number of neural disorders. Docosahexaenoic acid is the most abundant unsaturated fatty acid in the central nervous system. We have shown previously that this 22-carbon fatty acid can yield, upon oxidation, isoprostane-like compounds termed neuroprostanes, with E/D-type prostane rings (E(4)/D(4)-neuroprostane...

متن کامل

Insights into oxidative stress: the isoprostanes.

Oxidative stress, characterized by an imbalance between increased exposure to free radicals and antioxidant defenses, is a prominent feature of many acute and chronic diseases and even the normal aging process. However, definitive evidence for this association has often been lacking due to recognized shortcomings with methods previously available to assess oxidant stress status in vivo in human...

متن کامل

Isoprostanes.

The isoprostanes (IsoPs) are a unique series of prostaglandin-like compounds formed in vivo via a nonenzymatic mechanism involving the free radical-initiated peroxidation of arachidonic acid. This article summarizes our current knowledge of these compounds. Herein, a historical account of their discovery and the mechanism of their formation are described. A specific class of IsoPs, the F2-IsoPs...

متن کامل

Formation of F-ring isoprostane-like compounds (F3-isoprostanes) in vivo from eicosapentaenoic acid.

Eicosapentaenoic acid (EPA, C20:5, omega-3) is the most abundant polyunsaturated fatty acid (PUFA) in fish oil. Recent studies suggest that the beneficial effects of fish oil are due, in part, to the generation of various free radical-generated non-enzymatic bioactive oxidation products from omega-3 PUFAs, although the specific molecular species responsible for these effects have not been ident...

متن کامل

Enhanced lipid peroxidation in patients positive for antiphospholipid antibodies.

The mechanism leading to the formation of antiphospholipid antibodies (aPL) is still unknown. Because an in vitro study suggested that aPL may derive from pro-oxidant conditions, we sought a relationship between aPL and isoprostanes, indices of lipid peroxidation in vivo. Thirty patients with systemic lupus erythematosus have been studied. Seventeen (56.6%) were positive for aPL because they ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 18  شماره 

صفحات  -

تاریخ انتشار 2008